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A LIAP UNOV FUN C T I O NI \ I .  POE A

MATRIX DIFFERENCE-DIFFERENTIAL EQUATION

Abstract: A quadratic positive definite functional that yields

necessary and sufficient conditions for the asymptotic stability

of the solutions of the matrix difference—differential equation

k(t) = Ax(t) + Bx(t—T) is constructed and its strucLure anaIyz(~(1.

This functional, a Liapunov functional, provides the best possible

estimate for the rates of growth or decay of the solutions of

this equation. The functional obtained , and its method of con-

struction , are natural generalizations of the same problem for

ordinary differential equations, and this relationship is

emphasized . An example illustrates the applicability of the

results obtained.

1. Introduction.

In this paper we construct a functional for the determination

of the asymptotic behavior of the solutions of the linear autonomous

matrix difference—differential equation with one delay

~c(t) = Ax(t) + Bx(t—T), t > 0,

where x(t) is an n—vector function of time , A and B are con—~~~
WhI~$ ISC1IU

stant n x n matrices and T > 0.

In a recent paper [7 1 such a functional was constructed 
____

for the special case when x (t) is a scalar function; there , the~~~~~~~~

Liapunov functional was obtained as the limit , in an appropriate ~~~~~~~~~~~~~~~~~~~~~~
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sense , of a Liapunov function constructed by well-known methods

for a difference equation approximation of the original functional

equation. In this paper, we extend the results in [7] so that

they are applicable to the general matr ix case; we show that the

general form of the functional in the matrix case is a natural

generalization of the one obtained in [7] and that , wi th appropriat e

modifications , all of the arguments presented in that paper are

applicable here. Essential to this generalization was the study,

presented in [21, of the existence, uniqueness and structure of

the solutions of a special functional differential equation which

is intimately connected with the construction of the Liapunov

functional presented here.

The Li apunov func t iona ls  obtained , and t he i r  method ol con-

struction , are very natural extensions of the methods used for

the construction of Liapunov functions for linear systems of

ordinary differential equations. We attempt to bring this relation-

ship into evidence.

A simple example illustrates the applicability of the results

obtained , by giving a detailed construction of a functional for a

2 x 2 system.

The problem of the construction of Liapunov functionals for

equations of this type has been previously considered by Repin [8],

Datko [3] and Hale [5 ,6]. This study is in the spirit of the

previous ones, but is more specific. The functionals obtained here

are more general than the ones used by Hale, and they yield not

only sufficient but necessary conditions as well for asymptotic

stability. The paper of Repin does not seem to us to be correct,

— - ,~~~~~~~ q ’ ’  ‘. t ! 4 - 4 _ ‘ . ~~~~~~~~~~~~~~~~~~~~~~ ~.~~ r’W-~~w ———— - - — - _ i_ . —_______________
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through a simple mistake with profound consequences. Datko [31

has not pursued the problem of construction to the extent presented

here, but his ideas have had a deep effect on our approach.

2. The Difference—Differential Equation.

Denote by L2([a ,b],S~
’
~) the space of Lebesgue square

integrable fun ctions defined on [a ,b] with values in s~~~, and for

n
a fixed T > 0 consider the Hu bert space = X L ([—i ,0],I~

with inner product <u 1,u2> = V~v2 + f ~~~(0)~~2(0)d0 , where

u. = ~~~~~~ E ~~ and the naturally induced norm JJ (v, q )  =

+ J ~
T(o)~~(e)d() With x: [—T ,~~~) 

-~~ 
~~~~~~ for t ‘ 0 we denote

by x~ the function xt: t T , O] ~ ~~n where xt
(O) = x(t+0).

Consider the matrix difference-differential equation

$c ( t )  = Ax(t) + Bx(t—i), t > 0, (2.1)

where A ,B are n x n matrices , x(t) is an n-vector and T > 0,

together with the initial conditions

x0(0) 
= 

~~, x0 4~, 
(2.2)

where (~ ,4 )  E ~~
‘.

A solution of this initial value problem is a function

x E L
2
([_T ,~~] ,~~~ n) for each t > 0, such that x is absolutely

continuous for t > 0, it satisfies (2.1) a.e. on [0 ,t] and

x ( O)  = 
~~, x (e) = • ( O )  a.e. for 0 E [ — r , O ] .  It is known [1, 6]

that (2.1)-(2.2) has a unique solution, defined on [-i ,~~~~~) ,  which

depends continuously on the initial data in the norm of ~~~~
‘
.

— ---.-—-— .~- - 
____—_ _.--~~~~~~~~•.... •“~~~
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I
The initial value problem (2.l)-(2.2) can be rewritten as

x (0) x (0)
d — 

t (2.3)
-~~~~•x

xt xt

(x0(0),x0) (1 ,q ) E 
~~~~
‘
, (2.4)

where

x
~~
(O) Axt(0) + Bxt

(_T)

= 
~
xt

(O) , (2.5)
X~ ~o 

, T < 0 < 0

and this operator has a domain , dense in ~~~
‘, def ined by

= {(~ ,~ ) E ~ q is A.C. in [— u ,0],

q ’ E L2 [—t ,0], q~(0) =

The operator .c/ is the generator of the C0-semigroup ..Y’( t ) ,  where

Sf(t): ~~~~~~~~~~~~~~~~ is given by Y(t)(~~~p ) = (x(t) ,xt), (x(t)i x
~
) the

solution pair of (2.3), (2.4).

It is known [1,6] that there is a constant y such that the

spectrum of jj lies .Ln the left—half plane Re (X) < y, and that

for every ~ > 0 there exist a constant K > 1 such that

.
~~ ~~~~~~~~~ ( 2 . 6 )

The spectrum of d consists of those complex A that satisf y the

characteristic equation
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det [AI—A~Bc 
XT

3 = (2.7)

Finally, [5,61, a useful representation of the solutions of (2.1)

is given for every t, T > 0, by

xt+T ( O )  = S(T)xt (O) + 
j T

t 
(2.8)

where the matrix S is the solution of the matrix initial value

problem

S(t) = S(t)A + S(t—T)B,

(2.9)

S(0) = I, S(t) = 0 for t < 0.

We now turn to the construction of a Liapunov functional.

3. A Quadratic Functional.

Associated with the functional differential equation (2.1),

or (2.3)—(2.4), and motivated by the results in [7], we wish to

consider the rea l symmetric quadratic form on ~~‘ where

E ~~~
‘,

V(~~,~~) = ~
TMr + eóT 

j

0 
~
T(0)Re2óO~~(0)d0 +

+ ~TQ( 0 )~~ + Q(~~+T )e T)
B~~(~~)d~ (3.1)

+ 2 
‘_ ia

where 6 is a real number , M ,R are constant n x n real positive

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — .-- --~~~~~~~ --~~~ ~~~~~~~~~~~~~~~~~~~~ 
- -- — — 
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definite matrices and Q(a) is a cont inuously d i f f e r entiable ma tr ix

that is assumed to satisfy the initial value problem for the

funct ional  d i f f e r e n t i a l  equation

Q ’ ( ~~) (A T+~ I ) Q ( a )  + e~~TBTQT(T_n ), 0 < u < T ( 3 . 2 )

0(0) = Q(0)T = Q0 , (3.3)

where the superscript T denotes transpose and Q
0 

is a symme tr ic

but otherwise arbitrary matrix.

Evaluation of the Liapunov funct ional  ( 3 . 1)  along the ~;olu-

tions of (2.3)-(2.4) yields a function of time , which we denote by

V(t) = V(xt(0),xt). This function of time is differentiable along

the solutions, and a laborious but straightforward computation , which

makes use of ( 3 . 2 )  and (3.3), shows that the derivative of this

f unction along the solutions is given by

(r(t) = 
~~~~ 

V(xt(0),xt
) = _2SV(x

t (0),xt
) + (3.4)

+ x~~(O) [(A
T+5I)Q(O) + Q(0) (A+S1) + (A T+ 6 1) M  + M (A+ 61 ) +

+ e6TBTQT(T) + e~~TQ(T)B + 2e6TR]xt (0)

ST
— e h (xt(0),xt(T)),

where

ER M1~~~[ xt(0) 1
h (x

~~
(0) ,xt ( — T ) )  = [x~~(0),_e

6Tx~~(_T)]~ 
T 

. (3.5)

LB M R] L_e Tx (..T~J

— — - —
~~~~~~~~~~~ 

. 
- 

,
~— - ~~~~~~~~~ 
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~~
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It  is our purpose to show that , through the f u n c t i o na l

( 3 . 1 )  and its der ivat ive  ( 3 . 4 )  i t  is possible to estimate the

asymptotic behavior of the rate or growth on decay of the solutions

for our original functional differential equation (2.3)—(2.4).

For this purpose , appropriate choices must be made for the positive

definite matrices M and R and of the constant (S, and of the

matrix Q(ct) determined by (3.2) and (3.3).

To be more specific , denoting by y = max fB e A f  d e t [ A I -A - -

Be AT ] = o}, we wish to show that for every e > 0 and

= y + 2E it is possible to choose matrices M,R and Q(a)

satisfying (3.2) and (3.3) so that there exist positive constants

c1,c2 such that

Cl i I (
~;,~~

) J J~ < V(~~~ ) < 02 1 1  (~~~~) , (3.6)

and

< —2ov (F~,q) . (3.7)

These last relationships imply that {V(~ ,q)}~~
’2 

= ñ u ( ~~,~’ ) f ~f is a

norm equivalen t to the original norm on ~~~~
“ and that , in this norm

H (x~~(O) ,xt) I I  < f lx 0 ( 0) ,x o I~l e ~~~
T , ( 3 .8 )

whereas, in the original norm on

c 1/2
I I  (xt (O) ,x

~
) I (x0 (0) ,x0) I e (3.9)

.._ _.J 
~~~~1~~ ~~~~~~~~~~~~~~ . . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ‘~

_
~ -- —
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These estimates are precisely those stated in (2.6) and are the

best possible ones. It should be noted that the tiorin induced by

the square root of the Liapunov functional is the best possible

one in the sense that it yields ( 2 . 6 )  wi th  K = 1. Moreover , if

.

~ < 0, the above remarks show that the Liapunov functional (3.1)

y ields un i fo rm exponent ial  asymptotic s t ab i l i ty .

Consider , first of all , the appropriate choice for the

m a t r i x  Q ( cc )  , a solution of (3.2), (3.3) for 0 ‘- ~ ‘. r . ~u 1)1

it was shown that equation ( 3 . 2 )  wi th  ini t ial  conditions (3.3)

has a unique solution ; moreover , it was shown that the linear

vector space of all solutions of (3.2) has dimension n2. Indeed ,

introducing the notation

[q1 * (~ ) ]
Q(a) = ~~~ ( c x ) )  = J = 

~~~~~~ 
(cx ) ,... ~~ 

( -
~

) 1 ,

~ n * ~~
j

where q.~~(cx) and q~ 1
(cx) are, respectively, the ~

th row and

the 3
th column of Q(ct), defining the n2-vector

=

and defining the matrix R(ct) = Q
T(r_ci) , equation (3.2) rcduce~~,

through the use of the Kronecker (or direct) product of two

matrices , to the 2n2 system of ordinary differential equations

~q(cxfl r (A÷ oI) T e i e~
TBT e ‘

— I = I I I~ 
(3 .10)

dcx L ra~ L~ ~ e
ÔT BT ~i ® (A+cSI)T Lr cxd

with the auxiliary condition



q(~~) .. ~~~~~~ r (~~) = [f~ 1,... ~~~~~~ (3.11)

where F is an arb i t rary  n x n matrix. The solution of (3.10) ,

subject to (3.11) , yields solutions Q(ct ) with  n 2 
pa ramete r s

that can always be chosen to satisf y any a rb i t r a ry  cond i t ion  of the

type Q(0) Q(0)T = Q
0. In [2] the structure of these solutions

and simple methods of computation that take advantage of the

particular structure of the equation are presented.

Associated with equation (3.2)—(3.3) is an integral , whose

s t ructure  is motivated by a s imilar  integral  for ordinary differ-

ential equation . Indeed , let W be a symmetric matrix and let

S(t) be the solution of equation (2.9). Consider the cxpressio :~

Q(cx) f S
T(u)eó~~ S(u_ (~)e

6 (U_ (t)
du (3.1.~)

Since , for every E > 0, I S(t) I I  < j~e
(
~r4~e ) t  f or some K 1 and

since ~ 
= — -

~ 
- 2E, it follows that this integral converges. More—

over , it immediately follows from the definition of Q(cx ) tha t

= ~~~~~~~ ö(0) = QT(0) and , since S(t) satisfies (2.9),

that

6T TQ’ (cx ) = —Q(ct ) (A+cSI) — Q(cx+r)e B — S (cx)e W.

Since Q~ (~ ) = ~~._.. [QT(_cx) I for cx ~ 0, we also obtain that

~~~~
‘ (a) = (A+6I)Tö (cx) + BTe6TQT(T_a) + ST(_a)e~~W.

From these relationships it follows, since,for cx > 0, S(—cx) = 0,

..—•.—..‘—— ~ 
- r ~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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)

that Q ( ’~ ) s a t i s f i e s

9 ’ ( cx )  = (A T+~ I)Q(cx) + B
T
e~~

TQ
T(T_ cx) , 0 ‘ < T

(3.13)

= Q(0) = 
J S

T (u) c6UWS(u)e 5Udu

and , mor eover , given the continuity of Q(cx) , that

Q~~(0) + ~ tT(Q) = (AT+oI)Q (O) + Q ( 0 ) (A+~~I )  + BT O T Q
T ( )  + Q ( T ) e ~~~ L3

T (3.14)
= -S ( 0 ) ~~ = —W.

These observations , and the uniqueness of the solut ions  of

(3. 2)— (3. 3), show that Q (cx) as def ined  by (3. 12) i ~; I he uni que

solu tion of (3.2)—(3.3) with the initial conditions prescribed by

the second equation of (3.13).

It is transparent that to each constant symmetric positive

definite matrix W there corresponds a 9(a) given by (3.12)

and that this is the unique solution of (3.2)—(3.3) with initial

condition Q (Q) = ~ (0)T = J s
T(u)e~~w s u e ~~du which is positive

definite . Conversely, to each Q(0) = QT(0) = Q0, the unique

solution of (3.2)— -(3.3) yields a differentiable matrix function

Q (a) that, through (3.14) defines a unique symmetric matrix N

so that , for this W , (3.12) yields the unique solution to (3.2)-

(3.3) with the prescribed initial conditions. These remarks show

that the map W ~ Q(0), defined by

Q(0)
0

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  .“.~~~~~~ ~~~~~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



as a map on the space of n ‘ n symmetric matrices is one-to-one ,

onto , and it maps positive definite matrices W into positive

definite matrices 9(0).

With this particular characterization of the matrix function

Q ( ~) it is possible to bring into evidence the particular structure

of the Liapunov funcLional ( 3. 1) . Indeed , ~;ubs L L u L i  on of (3. 1 .~ ) I ii L~

(3.1) for Q (cx ) yields , after some rearrangements and interchanges

of integrals , that

V(~~,~~) = ~
T
M~ + e 3d f °~~

T(o)Re 2~
0
~~(o)de

+ 

f
scu~ : + J

s(u_a_T)B~~(cx)d . ,e 2~~
1
{S(u)~ ~~~~~~

+ J S(u—cx—T )B~~(a)d~ }du,
— -I

or , evaluating this funct ional on the solutions of our equation ,

and u sing ( 2 . 8 ) ,

v (x
~~
(0),x

~
) = x

~~
(0)nx

t
( 0 )  + e~~

T

(3.16)

+ J x t
( 0 ) W e 2 óu

xt+ (O)du.

Similarly, in this notation , equation (3.4) becomes

(r(x
~~
(0) ,x

~
) = _2

~
v(x

~~
(0) ,xt

) + x~~(0) [—W + (A
T+~ I)M + M (A-4-~ r) +

i ~~ . ~~~~~~~~~~~~~~~~~~~~ IT~
°
~ III1TI~’ 

~~
TM :E.~

L_e_ )
~;iI:~

l .
— 1T 

—
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Given the nonnegative nature of the last term in (3.16) it

follows that

min(X
~~~~

(M) ,0H~ ’ t A . ( R ) ) I ( . c , ,~~~) < ~~~~~~~

yielding a value of c1
, for equation (3.6), given by

c1 
= min (A m i n (M),e~~~~

TA i ( R ) ) .  (3.18)

Similarly, since, from (2.6),

I Ix (0) H K I I  (x (0) ,x ) < 1,0
(y+E:)u

1 I (x (0) ,x ) Iu ~~n -  u u ~~
. - 0 0

it follows that

V (.~, ~) < [max (Amax (M) ,e
t
~~~

TA max (R) + 
A~~~~(W) 

K2]

yielding , for equation (3.6), a value of c , iiven 1w

A (N)
c2 

= max (Ama (M), e~~~
TA max (R) ] + max K2. (3.19)

It remains to be shown that equation (3.7) holds. For this

purpose inspection of equation (3.17) indicates that it is necessary

and sufficient to show that it is possible, by appropriate choices

of positive definite matrices ~1,R and M , to have the matrix 

-v .--— 
-~~‘~~~ 

—.- _--
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rw  — (A~4~~I)
TM — M (A4-~ I) — Re61 MBe~~ 1

G 
I 

(3.20)

T 5Tl3 Me Re

posit ive semidef in i t e .  But  this  is always post ; l i d  e; i ndeed , .~

par ticular ly simple choice of such matrices is to let W ,R and

M to be nonnegative multiples of the identity matrix , i.e.

M = I, R = k
R

I and N = k
~
I. With k

w 
>>  k

R 
> >  1, the matrix C

is clearly positive definite , hence its determinant is positive ,

and the matrix will becorLie sernidefinite only when the determinant

vanishes. But , for the above choice of matrices we have

d e t ( G )  = det(k IeóT )det[k I - (A+AT) - 261 — c6T (k ~ + 
1

R

Letting kR = Amax~~
T
~~ and

kw = max{0,A a (A+A T) + 2\ + 2e6TA ~~ax (BTB ) } ,

then (3.20) is positive semidefinite and t. erefore , for these

choices of M,R and N,

(7(x
~~
(0) ,x

~~
) < _26V(xt (0) ,xt

). (3.21)

It is to be remarked that, with these choices , the Liapunov func—

tional constructed is particularly simple and reduces to

Li  
____________________________— —-—-S •— - 

~~~ 
• - - - 

= flas.a.— .a A - .,. - -~~~~~~ -~~ 
- -
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V(x
~~
(0)

~~
x
~
) = x

~~
(0)x

~~
(0) + e6T A max~~

T
~~ ~~~ 

+

+ max (0,A max (A+AT) + 26 + 2e ST/ (13
’P
n)}. (3.22)

( ‘1’ 26s
J x t+

(O)x
t÷

(O)e ds.

This functional is a direct generalization of that used in [71, and

generalizes those used by Hale [5,61 and Datko [3]. Nc recapitulate

the above results in the form of a

Theorem: Given the retarded equation ~c(t) = Ax(t) + Bx (t-T)

and the Liapunov functional V given by equation (3 .1) , if

y = max(Re A f  d e t [ A I_ A _ B e A T ] = 0} and EE > 0, then there

exist constant positive definite matrices N and R and

a differentiable matrix Q(cx), 0 < cx < T with Q (0) =

such that the functional V is positive definite , bounded

above , and V < 2(y+E)V.

Of course , if y < 0, the above result implies exponential

asymptotic stability ; moreover , the rate of decay is precisely the

expected one .

4. A Comparison with Ordinary Differential Equations.

It is our object , in this section , to point out the intimate

rela tionship between the results obtained for our functional equation

and the classical results for the construction of Liapunov functions

for ord in ary differential equations. 

— .~~~~~-~~~
-

~~~--- - -~~~~~ --—-.--
- . - . . - .



15

Recall, [4 1, tha t given the system of o rd inary  differential

equations

* ( t )  = Cx(t), (4.1)

where C is an n -< n matrix, a Liapunov function for this

system can be always taken as the quadratic form

TV(x) = x Px , (4.2)

where 1’ is a positive definite matrix. Morco’?er , if

y = max fRe A f det(AI—Cj = 0) and if, for E > 0, 6 y + 2E,

then given an arbitrary positive definite matrix N, the algebraic

equ tion

(C+6I)Tp + p (C+óI) —N , (4.3)

has a unique solution P which is positive de f in i t e .  This ma t r ix  p ,

if used in (4.2) along the solutions of the differential equation

(4.1) yields , upon differentiation , that

~7(x(t)) = -26V(x(t)) - ~
Tw~ < -26V(x(t)). (4.4)

Fur thermore , the unique positive definite solution P of (4.3) can

be obtained as the integral

= 
f
~eA

Tue w e ~~e~%u. (4.5)

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

. 

~~~~~~~~~~ 

.
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Let us now bring into evidence the r e l a t i o n s h i p  between the

results obtained in the previous section and these results. The

f u n c t i onal d i ffe rcnt . i . al  equa t ion  under  consi  do r M  ion  i

k(t) = Ax(t) + B x ( t — T ) , t 0 (4.1’)

Once again , we assume that y = max{Re A l det[A i_A_Be AT ) = 0)

and , for E > 0, let — 6 y + 2E. The Liapunov functional is

then of the form

V(xt (0),x~
) = x

~~
(0)Mx t (0) + eóT 

LT t t  (4.2’)

+ x
~~
(0)Q(0)x

~~
(0) + 2x~~(0) J Q( cx + T )e  a+ T )

BX~~~~~dQ +

+ 2 
~~~~ 

J x ~~(a)B
TQ(~ _a)e

6 +8+2T)Bxt (~~)dfdcx .

The choice of the positive definite symmetric matrices M and R

in this expression is rather arbitrary. Their purpose is to insure

the strict positive definiteness of the functional on the Ililbert

space ~1; it should be noted that if M = R = 0, the func t iona l

(4.2’) is positive , but does not satisf y a relationshi p of the type

V (xt (0) ,xt) > c1 f (x t (O) ,xt) I l~ for c1 > 0. The requirement that

the matrix G of equation (3.20) he positive semidefinite is always

satisfied for N = R = 0 and W positive semidefinite. Given an

arbitrary positive definite matrix W, it is always possible to

select positive definite matrices M and R so that G is positive

semidefini te.

~~~~~~~~~~~ ~~~~~~~~~~~~ 
~~~~~~~~~ 

_ _ _  ~~~~~~~~~~ .
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The choice of the continuously differentiabl e matri :< u (v )

0 < cx < T is critical. It must satisf y,  g iven an arbitrary

positive definite matrix N, the functional equation

= (AT+ ó I ) Q ( a )  + BTe6T QT(T_ cx ), 0 cx

T (4.3’)
Q (0) = Q (0),

with the condition

(AT+6I)Q(O) + Q ( 0 )  (A +6 1) + BTe6TQT(T) + Q(T)e6TB —N. (4.3”)

In the previous section it was shown that such a Q(a) always

exists and is unique.

With such a choice of Q ( c x ) ,  then one obtains that, along

the solutions of the functional differential equation (4.1’)

V (x
~~

(O)s x
~
) <_ 2 6V(x

t (0), xt ). (4.4’)

Moreover , such a matrix Q( cx ) 
exists , is unique , and a representation

of it is given by the integral

Q(cx) = 
f
~s
T(u)e 6Uws (u_cx)e 6~~~~

)du , (4 .~~’)

where S(t) is the solution of equation (2.9).

The strong relationship between the unprimed and primed

equa tions is now clear. Indeed , note that for i = o, the matrix

C in (4.1) becomes A + B and the matrix I’ in (4.3) becomes

~~~~~~~~~~~~~~~~~~ - -
~~~~~ - - ~~ . — -
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Q (0) + N and all the primed equations become the unprimed ones.

Equations (4. 3’) and (4. 3”) are of a much more comp l ex

nature than the familiar algebraic equation (4.3). However , in

spite of its appearance , the linear vector space of the solutions

of (4.3’) is not infinite dimensional but , as was pointed out in

the previous section , has dimension n2. Hence, although the

problem of construction of the LiapunOV functional for the func-

tional differential equation does not reduce to the solution of

an alg ebraic eq ua t ion such as (4.3) ; it reduces to Llic solut . Iofl cxl

a line,a~ differential equation , equation 
(3.10) , which is

accomplished without difficulty.

5. An Example.

To illustrate the application of the method developed here ,

we wish to briefly outline the construction of an appropriate

Liapunov functiona l for a simple two dimensional example. For

this purpose , consider the system

r-5 01 r4 21
*(t) = Ax (t) + B x(t— r ) = 1 1 x t  + I l x ( t — T ) ,  (5.1)

LO 2J LO 0J

where t 6. In the notation of Section 3 , the value ~ =

is selected as is indicated by a simple examina tion of the

characteristic equation of the system. For the construction of

the Liapunov functional (3.1) , appropriate positive definite

matrices M an d R mus t be selected and a matrix func t ion Q( x )

that satisfies (3.2), (3.3) and (3.14) must be determined given a

preselected positive definite matrix 1~I.

- -

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~ — -  ~~~~~~~~~~~~~ 

- -
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As indicated in Section 3 , an appropriate choice for the

matrices N, R and N is given by

M = I,

R = 
max (B

TB) I /20 I, (5.2)

W = max (0,A (A÷A T) + 26 + 2e61/A (BTB))l = 7,2461 = k 1..max max N

All that remains is to determine the unique matrix fun et rio n

Q (~~
) that satisfies (3.2), (3.3) and (3.14). The general form

of this matrix function is determined by obtaining the solutions

of the differential equation (3.10) following the methods indicated

in [2]; in a straightforward although somewhat lengthy computation

one obtains that the general form of this matrix

~q11(ct) ~~~12
( 1 )~~

Q(cx) I ‘ 0 < cx < t,  (5.3)
~~~2 1(~~~ q22 (afl

is of the form

= 
(cx-T/ 2) 

+ g1(6 ) e ~~~~~~ 
(cx-T/27~

q12~~~ 
= B

2El2
(6)e

~~
T
~ 

(a-T/2) + g
1
(6)q 21 ( 6 ) e ~~~~~~~ 

(~ _t/2)j +

(2—6) (cz—r/2)
~3 4 e

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
- ..



- 20

p’f~~) ( L x - I / 2 )  
~
.q21~~~ = ~1e

5
~
6
~ 

(cx-~/2) + 82E2 1 6 ) e

+ g1(6)fl 12 (~~)e 
f(6) ( a- r/ 2 ~~

— (2—6) ( c x — T / 2 )
+ 

~492
(6)0 , (5. -I )

an ci

q
22 (a)  = ~2~~ 22 (6)e~~~

6) ( a-T/ 2 )  
+ g1(6)g 22 (6)e 

f(6) (cx
~~

T/ 2 )

1 
+

r(2_6) (a-T/ 2 )  
++ ~3e~

6 2
~ 

(cx-T/ 2 )  
+ 

~~4
n hl 6

+ g
1

( 6 ) e  2-6) (cx
~~

T/2 )

1

In these expressions the indicated functions of 6 are , respectively,

given by

f(6) = (5_o )2 — 16e26’,

= ~‘T~fl + (5—6)

‘1 4eóT

g
2

I~6)  = 
7—26

V
4~~

6T
(5.5)

— 7—26
— 

8—46

Ô T
2e= _________________

[2—o—/flô) 1g 1 (6)

2eóTg1
(6)

- 
‘

2-6÷/ET~)

- i
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and

= n 12 (ó)n 21 (6).

The constants 
~l’~~2’~~3 

and fl
4 

are to be determined from the

four equations obtained from the relation Q(0) = Q (0)r (i.e.,

q12 (0) = q21 (0)) and from equation (3.14) (i.e., Q’(fl) +

= -W = -kwl).

Solution of these four linear equations for the indicated
1value of 6 = 
~~~~~ 

yields the values

= _ 0 . ll 5 . 10 5k~~ ~2 = 0 . 3 2 l . l 0 1k%J~
(5.6)

= 0 . 2 4 2 .l 0
~~

3kw , ~~ — 0 .6 2 2 . l0 3k~~.

With these values, it is easily computed that Q(0) = Q(Ø)T, and

that this matrix is positive definite.

- _ _~~____ _._,_ — -. . 
~— - — — ,~~.- — .— -—--.., —.--— —— --  — ..T
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